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Abstract 

Self-balancing robot finds applications in restaurant serving, advanced 

military surveillance, warehouse and transportation. Self-balancing two-

wheeled mobile robot has advantages over that of the traditional four-

wheeled in terms of zero turning radii which lends better manoeuvrability 

and flexibility even in narrow paths. Open literature indicates issues like 

jitter in the motion of robot due to inaccuracy in angle measurement for 

self-balance and issues of control system stability.  A prototype model 

with myRIO module was designed and tested for effectiveness. Two 

angular position sensors, i.e. accelerometer and gyroscope were deployed 

with PID balancing controller and a complementary filter for fusing 

sensor data for increased accuracy of tilt measurement. A* path planning 

algorithm was implemented in LabVIEW software for finding the 

shortest path for robot to travel from start to end position. An obstacle 

detection system using an ultrasonic sensor was deployed for collision 

avoidance. Upright balance on two wheels was achieved 99% accuracy. 

Keywords: Two wheeled Self-balancing robot, LabVIEW, myRIO, PID, 

Complementary filter 

1.0  Introduction 

Two wheeled robots is found advantageous for industries and domestic 

applications because of zero turning radius and compactness. Major areas 

of application of self-balancing robots include restaurants, military, 

warehouses and segway. The inherent Instability due to two wheels 

requires control algorithm for its standing upright and self-balancing. 

Two Wheeled Self-balancing robot using a Proportional-Derivative 

Proportional Integral (PD-PI) with Kalman filter which provides remote 

control application using IoT is developed [1]. Outer-loop control 

mechanism for two-wheeled mobile balancing robot, position-tracking 

control system applications using fuzzy adaptive algorithm are reported. 

It has both proportional-type feedback controller and self-tuning 

algorithm to enhance position-tracking performance in transient periods 

[2]. Double-loop control scheme based on active disturbance rejection 
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control to implement a stable upright control of the robot for self-balance 

applications is developed [3-4]. Kinematic model of a two wheeled self-

balancing robot and its control using Linear Quadratic regulator control 

techniques is reported [5]. It uses a complementary filter and 

Proportional Differential (PD) controller implemented using LabVIEW 

for efficient self-balancing robot [6]. Two-wheeled self-balancing robot 

using Arduino Microcontroller Board along with a single-axis gyroscope 

and two-axis accelerometer is demonstrated [7-8]. Two wheeled 

balancing mobile robot equipped with tilting mechanism in the lateral 

direction is developed. It can generate roll motions around the forward 

direction vector [9]. Kinematics model of a two wheeled self-balancing 

autonomous mobile robot is simulated in ADAMS along with 

experimental validation [10].  

This research incorporates PID control algorithm using LabVIEW and NI 

myRIO to solve real time control of self-balancing and navigation 

application. The feedback for balance control is achieved by the fusion of 

accelerometer and gyroscope sensor outputs using a complementary filter 

for high accuracy measurement. Remote control of the robot is achieved 

using a dashboard app provided by National Instruments. A* Path 

planning method is used for the robot to traverse from point to point 

without any collision in the predefined map given as input to the system. 

For obstacles that are not present in the map, obstacle detection using 

ultrasonic sensor is combined with the path planning algorithm to 

continuously update the robot path. 

2.0 Design for self-balancing 

Design for self-balancing mainly comprises of sensor data acquisition, 

complementary filter for fusion of gyroscope and accelerometer output, 

self-balancing PID control, motion control along with self-balancing, 

path planning algorithm block and IoT through NI Dashboard. For 

achieving self-balancing, a PID based control system by using an IMU 

(Inertial Measurement Unit) consisting of an accelerometer and 

gyroscope as feedback was used. LabVIEW software was used for 

graphical programming.   

The desired angle set point (0 degrees in this case) is given as input to the 

control system and feedback of the current angular position of the robot 

with respect to vertical axis is taken from the gyroscope and 

accelerometer. The feedback is subtracted from the desired set point 

(generally 0 degrees for self-balancing) to produce an error signal which 

is given to the PID controller input. Based on the error signal, the PID 

controller produces an output which acts as the duty cycle for the pulse 
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width modulation (PWM) signals which controls the speed of the motors 

connected to the wheels in order to produce a balancing action. The 

motors rotate in the same direction in which the robot tends to fall to 

produce a balancing action. Fig. 1 shows basic block diagram of the 

robotic system. 

 

 

 

 

 

 

Fig. 1. Block Diagram of the Robot 

2.1 Gyroscope data acquisition 

In this system, the L3G4200D gyroscope is used which is connected to 

the NI motor control board which is connected to one of the ports of NI 

myRIO 1900. The L3G4200D gyroscope sensor uses I
2
C protocol to send 

raw angular velocity data to myRIO. The gyroscope acts as the I2C slave 

and myRIO acts as I2C master. The angular velocity data sent by the 

gyroscope is in the form of LSB. 

The 16-bit L3G4200D gyroscope output is in signed integer 2's 

complement format and the sensitivity of the sensor is 0.00875 degree 

per second / Least Significant Bit (dps/LSB) from the datasheet. Thus, 

angular velocity in degree per second can be obtained by multiplying the 

raw output of the gyroscope with 0.00875 dps/LSB. The angular velocity 

data is sent through an integrator block to obtain angular displacement. 

2.1.1 Gyro drift / zero rate problem in gyroscope 

The L3G4200D gyroscope output has a non-ideal characteristic called 

zero-rate level offset error. Even if the gyroscope is stationary (called 

zero rate input) the output contains some non-zero offset (zero-rate 

level). With this error as input to integrator input, the output starts to 

increase at a constant rate as offset error would be constantly integrated 

over time. Thus, angular displacement keeps increasing even when the 

gyroscope is stationary. 

2.1.2 Solution to Gyro drift problem 

In order to eliminate gyro drift the gyroscope is kept stationary and 

output of the integrator is allowed to increase (due to gyro drift) for a 
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known period of time (say, 60 seconds). The angular displacement output 

is noted down after a known time period and is divided by the time 

elapsed. It gives mean offset error rate of the gyroscope for zero 

displacement. The mean offset error is subtracted from the angular 

velocity before it is fed to the integrator. It removes the gyro drift 

problem to a certain degree, but the output still have small low frequency 

errors (Fig. 2). 

 

Fig. 2. Procedure of acquiring data from gyroscope 

2.2 Complementary filter for fusion of accelerometer and gyroscope 

The gyroscope output alone cannot be used as a feedback element for 

angular displacement computation in the control system due to the gyro 

drift error and the output of a gyroscope is reliable only for a short period 

of time as it starts to drift from the true value when used for long 

duration. Another device that can be used in place of a gyroscope for 

angular displacement calculation of the robot is accelerometer (Fig.3).  

The accelerometer alone does not give accurate output as it is affected by 

all the forces that act on it. Every small force acting on the gyroscope 

disturbs its output and hence it can be considered highly sensitive for the 

present application as stable feedback is needed for self-balancing of the 

robot. Thus, the accelerometer output data can be useful only in long 

term as it has high frequency error.  

For best possible result the outputs of both gyroscope and accelerometer 

are combined using a complementary filter. Since the accelerometer has 

high frequency error and gyroscope sensor has low frequency error, the 

output of the accelerometer is passed through a low pass filter which 

filters out high frequency noise and output of the gyroscope is passed 

through a low pass filter. Output of the filters are summed to give the 

output of the complementary filter. In this way, by fusing the data of 

accelerometer and gyroscope, both high and low frequency noise error 

gets eliminated. The output angle measurement of the complementary 

filter can be mathematically written as equation (1). 

Filtered Angle=d x (Gyroscope Angle)+(1-d) x (Accelerometer Angle)  -----  (1) 

(Gyroscope Angle) = (Last Measured Filtered Angle) + (Gyro output x t) 
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Where d = Impulse response of a first order high pass filter = exp (-t/T), 

T is time constant = 0.75 seconds and t is sampling time = 0.005 seconds 

Using these values,  

filtered angle = 0.9934 x (gyroscope angle) +  0.0066 x (accelerometer angle) 

 

Fig. 3. Block Diagram of Complementary filter 

2.3 PID control for self-balancing control 

A PID controller (Fig.4) is used for implementing the control action for 

balancing the robot and keeping it upright. The input to the PID 

controller is an error signal obtained by subtracting the feedback from the 

complementary filter from the desired set-point. Proportional, integral 

and derivative action is performed on this error signal and a correcting 

signal output is produced by the controller in the range of -1 to +1 as a 

PWM range. This output of the controller acts as the duty cycle for the 

pulse width modulated signal (PWM signal) which is given to the motors 

connected to the wheels. Any PID Controller output can be 

mathematically determined using mathematical formula as in equation 

(2). 

                     ----------------------------------------------      (2) 

where P = Output of PID controller (correcting signal) 

Kp = Proportional Gain, Ki = Integral Gain, Kd = Derivative Gain, E = 

Integrated error signal,   e = Error signal, edt = Differentiated error signal 

The proportional gain Kp, derivative gain Kd and integral gain Ki for the 

PID controller are determined using the Ziegler-Nichols technique. As 

per the Ziegler-Nichols technique, the integral and the derivative gain are 

kept at 0  and proportional gain is incremented in small steps until stable 

and continuous oscillations are achieved by the system. The proportional 

gain value at which these oscillations are achieved is called the ultimate 
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gain, Ku and the oscillation period is Tu. These two values are used to set 

the gain values using the relation:  

Kp = 0.6 x Ku, Ki = 1.2 x Ku/ Tu,  Kd = 3 x Ku x Tu /40 

In this way the upright position of the robot is maintained by controlling 

the motors based on the tilt angle of the robot using a simple PID 

controller. 

 

Fig. 4. PID control for self-balancing 

2.4 Design for motion control 

Motion control is the component which provides movement and 

manoeuvrability to robot. The signal for control of the robot movement is 

given from the NI dashboard application. In case of a four wheeled robot, 

PWM signals can directly be given to the motors connected to the wheels 

to move the robot. But in case of a two wheeled mobile self-balancing 

robot, the motors cannot be directly controlled as it will make the robot 

unstable by interfering with the self-balancing control loop. Thus, the 

motion control loop has to be cascaded along with the self-balancing loop 

in order to make the robot stay balanced while in motion. Motion control 

system has two main components: A PD control for forward and 

backward motion and A PD control for turning motion of the robot. 

2.4.1 PD control for forward and backward motion 

Easy way for a two wheeled self-balanced robot move forward or 

backward (Fig.5) is by introducing a small tilt error as input to self-

balancing PID block. Due to the small angular error given to the 

balancing PID control block, the PID produces an output which moves 

the robot in the direction in which the robot is falling. In this way, by 

providing a very small positive or negative error input to the balancing 

PID block, the robot can be moved forward or backward as per the input 

given by the user. In order to calculate the distance moved by them-self 

balancing robot, an encoder is used which produces a given number of 
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pulses for one revolution. So, the distance to be travelled is given as the 

input setpoint to the system. This setpoint is subtracted by the feedback 

coming from the encoders to give an error signal. This error signal is fed 

to a PD controller which produces an output which is used as the tilt error 

signal to the balancing PID loop. Thus, as the robot gets closer to the 

setpoint, its speed will reduce because of the control action of the PD 

controller and it will gradually come to rest when the robot reaches the 

setpoint distance. This same principle cannot be used for turning motion 

as both wheels are controlled together by the balance control loop, but in 

a turning motion both the wheels have to be controlled independently. 

 

 

 

 

 

Fig. 5. PD control for forward and backward motion 

2.4.2 A PD control for turning motion of the robot 

In order to achieve turning motion, both the motors connected to the 

wheels are directly given PWM signal which is summed along with the 

output of the balancing PID control (Fig.6). The motors are made to 

rotate in opposite directions to each other in order to produce a rotating 

motion. The input setpoint to the system is given as the number pulses 

produced by the encoder for a 90-degree turn. The output of the encoder 

is given as the feedback. The error signal produced by subtracting the 

feedback from the setpoint is given to a PD controller which produces an 

output which is treated as duty cycle for the pulse width modulated signal 

(PWM signal) to be given to the motors. This PWM output is added to 

the PWM output of the balancing PID for one wheel and is subtracted 

from the PWM output of the balancing PID for the other wheel in order 

to rotate them in the opposite directions. The proportional and integral 

gain values for the PD controller are found out using the Ziegler-Nichols 

technique. 
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Fig. 6. PD control for turning motion 

2.5 A* path planning algorithm  

Path planning technique is being used in this project in an attempt to 

make the robot completely autonomous. Basically the A* path planning 

algorithm is used which requires a predefined map input. Path planning is 

combined with obstacle detection in order to avoid the obstacles which 

are not present in the map. A* is a popular path planning algorithm 

widely used in video game development and also autonomous vehicles. It 

takes input as map and gives the shortest route between any two 

coordinates in the map as per the user’s input. The map is divided into 

grids or coordinates for simplifying the search area. The algorithm 

comprises of an open list and a closed list. The open list is a set of all the 

coordinates or grids in the vicinity of the present coordinates where the 

robot is, where the robot can go next. The closed list comprises of all the 

coordinates or grids that has the robot has already travelled and is not 

supposed to travel in the future. 

The A star algorithm uses the following simple formula for path 

planning- 

F= G + H 

Where F is the overall cost to travel to an adjacent grid 

G is the cost to move from start node to the next adjacent node 

H is the cost to move from that node to the destination node without 

considering any obstacles in the way to the destination node. 

All the nodes in the open list will be evaluated as per the above formula 

and the node with the lowest F score will be considered as the next move 

towards the destination and it will be included in the closed list. In case 

two nodes in the open list have the same F score, then both the paths will 

be evaluated and the F scores of both the paths are compared on reaching 
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the destination, in case both the routes are able to reach the destination. 

The one with the lower F score is considered as the shorter path. This 

process keeps on continuing until the destination coordinate is added to 

the closed list which indicates that the robot has the reached the 

destination (Fig.7). 

Fig. 7. A* Algorithm Implementation 

2. 6 Obstacle Detection 

An obstacle detection system is used to ensure that the robot will not 

collide with any object while moving to its goal in an optimum way. A 

robot gets data of the physical variables in its vicinity through sensors 

that are mounted on the robot. There are many sensors that can be used 

for the purpose of obstacle detection in the market like infrared sensors, 

capacitive sensors, inductive proximity sensors, ultrasonic sensors, lidar, 

hall effect sensors, sonar, radar, magnetic type proximity sensors and 

many more. But for our particular application, an ultrasonic sensor is 

used as distance of an obstacle can be measured with ease, is inexpensive 

and can also be easily mounted on top of the robot. 

The range of operation of the ultrasonic sensor being used is about 10 cm 

to 30 cm. When the robot is moving on the desired path the ultrasonic 

sensor continuously keeps transmitting ultrasonic waves in the direction 

in which the robot is moving. Whenever an obstacle is encountered, the 

ultrasonic waves that were transmitted by the sensor are reflected by the 

obstacle and are received back and, is detected by the sensor. Based on 

the time required for the ultrasonic to hit the obstacle and come back to 

the sensor, the distance of the obstacle from the sensor/robot can be 

calculated. Distance is given by equation (3). 

         
   

 
   -----------------------------------------------------             (3) 
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where, T = time needed for the ultrasonic wave to hit the obstacle and 

return 

C = speed of sound, If the distance between the robotic system and the 

obstacle is less than or equal to 5 cm, then the motion of the robot is 

stopped, and the robot comes to rest. 

2.7 NI Data Dashboard App for Internet of Things (IoT) 

The NI Dashboard is an application by National Instruments which 

allows the user to create dashboards(or a front panel) consisting of 

different controls and variables such as charts, buttons, LEDs, textboxes, 

gauges etc., in order to remotely control a system. The concept of shared 

variables is used in order to send and receive data from the dashboard 

application. The variable which the user wants to access remotely is 

declared as a shared variable in LabVIEW application. These shared 

variables are sent through the network with the help of a shared variable 

engine (SVE). The shared variable engine uses the NI Publish/Subscribe 

protocol in order to transfer shared variable data through the network. In 

this type of communication, the sender “publishes” data into a particular 

class among several classes in the network and the receiver “subscribes” 

to a particular class of interest and extracts the data present in that 

particular class. In this project, the motion control of the robot is done 

using the app entirely using the concept of shared variables. Also, the 

data like the current angular displacement of the robot, distance of 

obstacle from the robot and PID response of the system can be directly 

viewed in the dashboard application. 

3.0  Results and Discussion 

It consists of outputs obtained from sensor data acquisition, 

complementary filter output, comparison of filtered and unfiltered sensor 

data, output response of self-balancing PID control loop and also output 

of the software implementation of the A* path planning algorithm.  

3.1 Gyroscope and Accelerometer Response 

Fig. 8, it is evident that the accelerometer response is not stable at the 

balance point of the robot, and it keeps drifting, hence it is alone not ideal 

for stabilising the position for self-balance of the robot. It is observed that 

accelerometer output does not drift over time and is constant at -140 

degrees, but has a lot of noise which can make a self-balancing system 

unstable. 

Fig. 9 understand the Gyroscope response shows a drift as an offset over 

a long period of time. There is a drift of nearly 1 degree in a time period 
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of 10 seconds which makes its output highly unreliable in the long term. 

Its response is reliable only for a short period of time. 

 

Fig. 8. Accelerometer response at balance point          Fig. 9. Graph of Gyroscope drift over time   

3.2 Complementary Filter Response 

Fig. 10a shows LabVIEW based complementary filter output. The robot 

is kept stationary at an angle of -148.2 degree.  Fig. 10b shows outputs of 

the sensors and filter at an interval of t = 0 to 40 seconds.  

 

Fig. 10. Complementary filter output a) before gyro drift and b) after gyro drift                                                           

It is observed that the output of complementary filter remains unaffected 

by the gyroscope drift as well as the noise present in the accelerometer. 

In the interval t = 0 s to t =10 s, the gyroscope value starts drifting from 

its original value while the noisy output from the accelerometer remains 

constant at its original value. In the interval t=30s tot = 40s, the 

gyroscope output has drifted by around 4 degrees in a time period of 40s. 

In both these cases the output of the complementary filter remains 

constant at its original value and does not have any noise. 

3.3 Self balance PID response to disturbance 

The response is obtained by tuning the controller using Ziegler-Nichols 

technique. Using this technique, the ultimate gain Ku and the oscillation 

period Tu, with this ultimate gain value was found to be. 

Ku=0.25, Tu=0.57 ms 
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As per Ziegler-Nichols technique, 

Kp = 0.6 x Ku= 0.6 x 0.25= 0.15 

Ki = 1.2 x Ku/ Tu= 1.2 x 0.25/0.00057= 526.31 

Kd = 3 x Ku x Tu /40= 3 x 0.25 x 0.00057/40 = 10.6 x10
-6 

Steady state error=0.5 degrees, Settling time=0.1 seconds, Rise time=12 

milliseconds 

 

Fig. 11. PID Response of system to Disturbance 

3.4 A* Path Planning Output 

Fig. 12 shows A* algorithm output on LabVIEW. For implementing A* 

algorithm, the map input is created using a two dimensional Boolean 

array as shown in Fig. 12.  Four numeric inputs above the map are for 

providing the start and end coordinates for the path planning. The blue 

coloured line in the intensity graph shows the path planned based on A* 

Algorithm and the arrays to the right of the intensity graph stores the 

coordinates of the path to be travelled as per route decided by the 

algorithm. Thus the Robot moves in the desired path without collision 

with obstacles as shown in the Fig. 12. 

 

Fig. 12. End result of the A* path planning algorithm 
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4.0 Conclusion  

A two wheeled self-balancing robot was designed using PID control 

algorithm with an inertial measurement unit in the feedback loop. Sensor 

fusion was achieved by using complementary filter, accelerometer and 

gyroscope. High accuracy of tilt angle measurement and overall stability 

was achieved. A* path planning algorithm was implemented in 

LabVIEW for finding shortest path for travel from point to point.  
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