
Ankur et.al. Improvement in Speed of Hardware Adaptive Filter

Improvement in Speed of Hardware Adaptive Filter

Ankur, Veenadevi S. V.*

Dept. of Electronics and Communication Engineering

RV College of Engineering, Bengaluru

Abstract

This paper deals with design modification of adaptive filter to enhance the

performance of an audio chip which is widely adopted for digital signal

processing. The Register Abstraction layer was implemented to provide

access to registers directly by name and address. The Universal

verification methodology was adopted to simulate the functional

verification of digital hardware. The simulation resulted in reduction of

50% of redundant clock cycles which prevents the stopping of jobs

midway in a low power and high speed application. Performance and

debug registers present in the existing design provided number of clock

cycles per job. Even marginal gains were quite useful when the amount

of changes to Register Transfer Logic were decreased.

Keywords: Audio Chip Device, Universal verification Methodology,

Register Abstraction layer

1.0 Introduction

Adaptive filter is an important component of audio chip for digital signal

processing (DSP) and has wide variety of applications [1]. To provide a

quality experience regardless of the environment, adaptive filters require

a Go To approach. An Audio subsystem requires a lot of resources to

perform adaptive filtering and offload the burden from the main digital

signal processor. Hence A hardware accelerator consisting of specialized

blocks for performing adaptive filtering can be utilized to provide a

substantial performance boost.

Adopting Register Abstraction Layer (RAL) makes it possible to access

registers directly by name and address. This allows easy manipulation of

thread related registers which can verify whether a potential enhancement

leads to less wastage of clock cycles. Adaptive filters, because of their

ability [2] to operate satisfactorily in mobile environments, have become

an important part of DSP applications where the characteristics of the

incoming signals are unstable. A few examples include echo cancellation,

*Mail address: Veenadevi S V, Associate Professor, Department of Electronics and Communication

Engineering, RV College of Engineering, Bengaluru – 59

Email: veenadevi@rvce.edu.in, Ph: 8762206268

RVJSTEAM Vol 2, Issue 2, July 2021 Page 31

Ankur et.al. Improvement in Speed of Hardware Adaptive Filter

adaptive beam-forming and channel equalization. The basic functionality

comes down to the adaptive filter performing a range of use-cases, namely,

inverse system identification, system identification, noise cancellation and

prediction. Adaptive filters, because of their ability to operate satisfactorily

in non-stationary environments, have become an important part of DSP

applications where the statistics of the incoming signals are unknown or

changing [3, 4]. Obtaining optimal design usually requires prior

knowledge of certain statistical parameters (mean and correlation) within

the useful signal. One of the popular measures is known as least mean

squared error minimization in which the difference between the statistical

measures of actual and the expected signal is obtained. Hardware

Description Language (HDL) like verilog, system verilog, etc. is used as a

base to synthesize hardware to create a functioning filter. Multipliers,

Dividers, Multiply Accumulate (MAC) units are all coded in HDL.

Communication between different modules is also coded in HDL. HDLs

are also used in implementation of Finite State Machine (FSM), which

makes up an integral part of most Register Transfer Logic (RTL) based

designs.

UVM (Universal verification Methodology) is a methodology [5] for the

functional verification of digital hardware, primarily using simulation. The

hardware or system to be verified would typically be described using

Verilog, SystemVerilog, VHDL or System C at any appropriate

abstraction level. It may be behavioral, register transfer level, or gate level.

UVM is explicitly simulation-oriented, but UVM can also be used together

with assertion-based verification, hardware acceleration or emulation. In

UVM, there is a mechanism to be followed when it sends to the

transactions from the sequencer to the driver in order to provide stimulus

to the DUT. A particular sequence is directed to run on a sequencer which

in turn breaks down into a series of transaction items and these need to

be transferred to the driver where these transaction items are converted

into cycle based signal/pin level transitions.

2.0 Design Methodology and Implementation

2.1 Current Block Design

Fig. 1 shows a simplified block diagram of the current design. It consists

of a system wide DDR (Double Data Rate memory), Slave interface, NoC,

Internal RAM, DMA and core. The processor is a core on which

software or firmware is supposed to run. The following steps are adopted

for the design:

i) The software invokes Hardware Adaptive Filter (HW- AF)

RVJSTEAM Vol 2, Issue 2, July 2021 Page 32

Ankur et.al. Improvement in Speed of Hardware Adaptive Filter

functionality and data transfer takes place between core and DDR

(Double Data Rate memory).

ii) The core transmits and also interrupts the signal to slave interface.

iii) The slave transfers the data from DDR to its own internal memory.

iv) The processing begins in the filter core and slave transmits to

master.

v) The master retrieves the processed data from the DDR.

Some of the features of the current design include:

• Debug registers and one of the threads of debug registers is to

count the clock cycles occurred per thread.

• The core is allowed to submit four threads at a time and once a

thread is submitted, it can b e in t h e s t a t e o f pending, progress

or completed. After the submission, the order of thread execution

is thread1 thread2 thread3 thread4

• A thread can be cancelled only if it is in pending state

• Initiates the actual thread by writing to GO/GO thread2/GO

thread3/GO thread4

• Threads can be submitted into queue if it is not in the state of

pending or progress.

Fig. 1. Simplified Block Diagram

A schematic representation of design procedure is as shown in Fig. 2.

After running all test cases, the design and data flow during one thread

cycle can be ensured. Once the patterns are analyzed, it becomes necessary

to visualize the parts of the design that need to be improved. If the

performance enhancement reduces, the number of clock cycles requires

DDR

 CSR

NOC

 Core

INTERNAL RAM

FILTER CORE

DM

Config

ram

Interrupts

MASTER

SLAVE

RVJSTEAM Vol 2, Issue 2, July 2021 Page 33

Ankur et.al. Improvement in Speed of Hardware Adaptive Filter

less amount of changes in RTL. The statistical measures depends on the

number of files edited and number of modules, and debugging effort time.

After implementation of improvement through changes in RTL, a test

bench is prepared to check the functional correctness of the applied

change. Also one can again run the test cases to see if changes have not

caused anything to break in the entire design.

Some of the possible avenues to explore for improvement include

interruption of midway thread, running two threads simultaneously,

compression of filter coefficients, and checking of gating using power

analysis tools. When the improvements are performed, they can be again

verified by changing the registers appropriately and new scenarios must

be coded onto the reference design. Also some combinational logic is

altered, like conditions for interrupts to trigger, certain enable and disable

signals that were being used to track the status of jobs. Hence, performance

enhancement must be considered only if it is providing a drastic variation

for small changes in RTL.

Fig. 2. Filter Design Methodology

2.2 UVM Register Model

The UVM Register layer provides standard base class libraries that enable

users to implement the object-oriented model to access the DUT (Design

under Test) registers and memories. UVM Register Layer is also referred

to as UVM Register Abstraction Layer (UVM RAL) as shown in Fig. 3.

N

Y

NO

YES

Run all test cases to understand the Design and Data flow

Pick a possible improvement parameter

Is parameter is easy to

implement

Manipulate sequences and check if functionality is already present or not

Make changes in RTL to implement the functionality

Test bench

shows desired

Profile and calculate jump in performance

RVJSTEAM Vol 2, Issue 2, July 2021 Page 34

Ankur et.al. Improvement in Speed of Hardware Adaptive Filter

Fig. 3. Register Abstraction Layer

Some of the advantages of UVM RAL Model are:

Provides high-level abstraction for reading and writing DUT (Design

under Test) registers. i.e. registers can be accessed with its names, address

or reference.

UVM provides a register test sequence library containing predefined test

cases and these can be adopted to verify the registers and memories.

Register layer classes support front-door and back-door access.

Design registers can be accessed independently of the physical bus

interface. i.e by calling read/write methods.

The register model can be accessed from multiple concurrent threads. It

internally serializes the access to the register.

RAL packages can be directly reused in other environments. Defines the

set of rules or methodology on register access, which can be followed

across the industry.

Automated RAL model generations, tools or open-source scripts are

available for RAL model generation.

2.3 Reference Model

Reference model can be considered as vital against which the UVM test

bench compares values and determines functional correctness. One of the

most critical parts of any verification environment is the expected output

calculation [6]. UVM output is calculated by the reference model, which

is normally implemented in System Verilog. The problem arises during

designing a UVM environment for complex designs as the wireless

baseband digital systems. The implementation of the reference model

would be a bottleneck since it is complicated. The reference model also

must be coded with a high degree of accuracy which might be very

difficult to achieve using Hardware Description Languages (HDL)

especially with bulky designs that involve sophisticated algorithms.

Hence, the implementation of the design would not be coded in a straight

Register

AGENT

DUT

RVJSTEAM Vol 2, Issue 2, July 2021 Page 35

Ankur et.al. Improvement in Speed of Hardware Adaptive Filter

forward readable manner using this approach. Also the Design Under Test

(DUT) is already written in HDL, so a high-level language is more

convenient to be used in a wide variety of applications. For instance, the

communication and signal processing communities utilize MatLab for

prototyping and delivering the abstraction models for the designs, while

the video coding and image processing utilize C/C++ coding language.

3.0 Results and Discussion

The cancellation s ignal through UVM virtual sequencer is as shown in

Fig. 4. The go1, go2, and go3 signals get triggered which then sets of

thread1, thread2 and thread3 to execute sequentially. Once thread1 starts

running, the other two, thread 2 and thread 3 are in pending state. A

cancellation pulse is sent midway during thread execution. In this case,

progress of thread 1 does not get affected because RTL (Register Transfer

Logic) do not get and the functionality is currently not present.

Table 1. Thread Cancellation Improvement

 Before After Performance

Jump

Clock Cycles per

thread

2000000 2000000 0%

Clock Cycles Wasted 1000000 10 50%

The Thread Midway Cancel Successful case is as shown in Fig. 5. Once

the go signal is given, thread goes into progress state. Once the cancel

Pulse is given, the thread that was in progress is disabled. Thread

Cancellation Successful for Use-case: The RTL change done to

implement the feature have propagated and broken the whole system,

however it did not happen and now feature must be tested for a use-case,

Hence it was then simulated on an existing use-case with appropriate

modifications. A use case being cancelled midway during its processing

is as shown in Fig. 6.

Table 1 shows the amount of jump in performance. It can be seen that if

a thread is not cancelled midway, this doesn’t offer any improvement,

However if software chooses to preempt the thread for any reasons,

Example higher priority task. On an average it assumed thread is stopped

right in middle, in this case it will save 50% of the clock cycles that the

thread taken to finish itself.

RVJSTEAM Vol 2, Issue 2, July 2021 Page 36

Ankur et.al. Improvement in Speed of Hardware Adaptive Filter

Fig. 4. Cancellation Signal Received

Fig. 5. T hread cancelled successfully

Fig. 6. T hread cancelled successfully for Use Case

4.0 Conclusion

The performance analysis of a newly designed adaptive filter was carried

out. It can be inferred that the performance enhancement reduces the

number of clock cycles and changes for RTL. Hence the amount of

changes in UVM would require UVM test bench which mostly revolves

around changes in the monitor and scoreboard. This improvement had the

RVJSTEAM Vol 2, Issue 2, July 2021 Page 37

Ankur et.al. Improvement in Speed of Hardware Adaptive Filter

potential to save huge number of clock cycles, which matters a lot for a

low power and high speed application. Performance and debug registers

present in the existing design give the number of clock cycles taken per

job. Even marginal gains were quite useful when the amount of changes to

RTL were reduced.

References

1. D S Chen, P Y Chen, Y W Wang, Hardware/software co-design of

nlms adaptive filters on FPGA, IEEE 15th International Symposium on

Consumer Electronics (ISCE), 442–445, 2011

2. P S R Diniz, Adaptive Filtering: Algorithms and Practical

Implementation, Springer Publications, ISBN: ISBN 978-0-387-

68606-6, 2008

3. Y Mollaei, Hardware implementation of adaptive filters, IEEE Student

Conference on Research and Development (SCOReD), 45–48, 2009

4. F Nekouei, N Z Talebi, Y S Kavian, A Mahani, FPGA implementation

of LMS self correcting adaptive filter (SCAF) and hardware analysis,

8th International Symposium on Communication Systems, Networks

Digital Signal Processing (CSNDSP), 1–5, 2012

5. A Moursi, R Samhoud, Y Kamal, S El-Ashry, A Shalaby, Different

reference models for UVM environment to speed up the verification

time”, IEEE Conference, 67–72, 2018

6. W Ni, J Zhang, Research of reusability based on UVM verification,

IEEE 11th International Conference on ASIC (ASICON), 1–4, 2015

7. A Jain, R Gupta, Scaling the UVM model towards automation and

simplicity of use, 28th International Conference on VLSI Design,

164–169, 2015

RVJSTEAM Vol 2, Issue 2, July 2021 Page 38

	pp-RVJ47 corrected

