
Sahana B et.al. Optimal Load Balancing Strategy in a Virtual Environment

Optimal Load Balancing Strategy in a Virtual

Environment
Sahana B

1
, Abhay Deshapande

1*
, AV Sruthi

1
, Deekshith KN

1
,

Diksha Dinesh
1

 1Department of Electronics and Communication Engineering, RV College of Engineering®,

Bengaluru

Abstract

In a virtual environment, load balancing is the method of assigning a collection

of tasks through a range of resources, in order to make their total functionality

more efficient. Load balancer is used to increase the device efficiency for the

user, and overall service stability at the same time. Resource allocation in a

virtual environment, in this paper, is accomplished using Amazon Web Services

(AWS) as the basis for our virtual environment. Amazon Relational Database

Services (RDS) supports high storage capacity and scalability. HAProxy

performs the duties of a Load Balancer, by allocating incoming requests

amongst the virtual servers. The virtual servers, which are created by setting up

Amazon Elastic Computer Cloud (EC2) instances have same properties such as

load bearing capacity and reaction time. One of the EC2 instances is configured

to host HAProxy as the load balancer. The load bearing potential of HAProxy is

inversely proportional to the execution time, ensuring faster processing of the

incoming requests. The proposed model is highly efficient, as it is noticed that

the number of user increases the execution time varies by small amount. For up

to 5 users the average execution time is 0.690 ms whereas for the user range of

20-25 the average execution time is 0.801 ms. For a scenario where the web

servers differ in terms of load bearing capacity, the algorithm may be modified

by assigning weights. HAProxy load balancer optimizes resource allocation and

provides flexibility.

Keywords: Access Log Files, Amazon Relational Database Services (RDS),

Amazon Web Services (AWS), Elastic Computer Cloud (EC2) Instances,

HAProxy, Virtual Machines VM.

1.0 Introduction

Cloud computing is an essential technology in today’s continuously technically

advancing world. Providing different types of user services through internet

form the basis of cloud computing. These services include tools and

applications like data storage, servers, databases, networking, etc. So long as an

electronic user has access to the internet, they have access to the data and

software programs needed to operate it. In cloud computing, virtualization

means creating a virtual instance of hardware computer systems, disk tools, and

*Mail address: Abhay Deshpande, Associate Professor, Department of Electronics and

Communication Engineering, RV College of Engineering®, Bengaluru – 59

Email: abhayadeshpande@rvce.edu.in, Ph.: +91 9980815636

RVJSTEAM, 1,2 (2020) 31

mailto:sahanab@rvce.edu.in

Sahana B et.al. Optimal Load Balancing Strategy in a Virtual Environment

network computing services. A well-known example of virtualization is the

drive facility offered by Google which helps millions of users to store and share

data. Majority of servers used by companies is based on a pay and use policy.

Best examples of cloud providers currently are Google cloud, Microsoft Azure,

Amazon Web Services (AWS), Alibaba Cloud, IBM cloud, Salesforce, SAP,

etc. The conventional methods of maintaining a server is highly inefficient

compared to today’s virtual cloud servers. Maintaining large number of physical

servers is costly; moreover, not all the servers are used at every point of time.

Server usage depends on sent requests. Excessive number of requests leads to

overloading of a server, hence causing it to shut down. Using cloud servers

overcomes all these problems as large number of servers can be rented for that

particular peak time. Based on the number of requests there is always scope for

extension, thus avoiding the problem of overloading.

Current developments in virtualization technology have transformed the way

computing networks are designed and operated. Nonetheless, virtualization

systems have a detrimental impact on the device output predictability, which

poses many problems in managing efficiency and resource utilization. Lianjie

Cao et al. [1] resolved efficiency issues by defining and modeling resource

management task output in two technology scenario: distributed network

simulation and network virtualization (NFV). Mahendra Bhatu Gawali et al. [2]

proposed a heuristic approach combining the modified analytical hierarchy

process (MAHP), bandwidth aware divisible scheduling (BATS) +BAR

optimization, longest expected processing time preemption (LEPT) and

dividing-and-conquering methods for scheduling tasks and allocating resources.

Haitham Salman Chyad et al. [3] addressed utilization of soft computing with

better efficiency on cloud to automate and plan the tools. Rajanikanth Aluvalu

et al. [4] recommended productive allocation of virtual machines for successful

use and increase in resource utilization and productive virtual machine

implementation in cloud resources. Abhirup Khanna et al. [5] presented a novel

resource allocation system which works on the dynamic resource allocation

principles. B. Adrian et al. [6] proposed K-means clustering algorithm for

virtual machine allocation process in place of cloudSim FIFO algorithm.

Bhavan Bidarkar et al. [7] addressed optimal algorithms for load balancing.

Sandeep Kapur et al. [8] presented a unique way of choosing encryption

algorithms to prevent misuse. Mahesh et al. [9] suggested the method of

decentralized distribution of services delegated to cloud consumers. The

calculation of unequal usage of different VM services and the skew interest load

balancing between VMs can be used.

Tinghuai Ma et al. [10] discussed five main cloud computing topics: locality-

aware job scheduling; reliability-aware scheduling; RAS energy-aware; RAS

layer of SaaS software; and workflow scheduling. Mayanka Katyal et al. [11]

provided a broad variety of load balancing solutions in different cloud settings

focused on Service Level Agreement (SLA) specifications. Lu Huang et al. [12]

is focused on the actual condition in the cloud with the algorithms of resource

RVJSTEAM, 1,2 (2020) 32

Sahana B et.al. Optimal Load Balancing Strategy in a Virtual Environment

management and scheduling. V Vinothina et al. [13] discussed in detail various

resource allocation strategies and their challenges.

HAProxy load balancer has very high load bearing capacity when implemented

with Round Robin algorithm which uses basic data structures to perform

resource allocation. The algorithm implemented in this work does not store the

states of the previous requests of the prior states, instead it performs hash

mapping of the resources allocated to a particular virtual machine. It also

maintains the state list which shows the availability of virtual machine for

performing resource allocation, based on which the HAProxy can allocate

resources to the available virtual machines exclusively, thus maintaining data

integrity. Load balancers like application load balancer redirects the incoming

requests based on the IP address of the virtual machines whereas, the HAProxy

load balancer is configured for the user to access the webpage through public

DNS of the load balancer. The load balancer is responsible for allocating

resources cyclically using round robin algorithm.

2.0 System Development

The system development starts by creating a Relational Database System

(RDS). The RDS is linked to the two EC2 instances (VM1 and VM2), each one

acting as a separate virtual server. HAProxy is set up as the load balancer as it is

efficient with quick response time and it uses the RRA to assign resources to the

VMs. Some more significant aspects of the virtual network include security

groups which is created for each entity, and a VPC which is created for the

whole network.

2.1 Methodology

Fig. 1. Process of optimal load balancing using HAProxy

Process of optimal load balancing using HAProxy is shown in Fig. 1. Two

Amazon Elastic Cloud Compute instances (VM1 and VM2) were created to act

as virtual servers. Amazon RDS is used to create the database accessed by the

EC2 instances. The contents of the RDS instance can be known by checking the

SQL workbench. The VM1 and VM2 instances are connected to apache web

HAProxy - Load Balancer

RDS

SQL
Workbench

Login

page

Access Logs Access Logs

VM1 VM2

Login

page

RVJSTEAM, 1,2 (2020) 33

Sahana B et.al. Optimal Load Balancing Strategy in a Virtual Environment

servers which host login pages that act as a user interface. A third instance EC2

instance is created to act as the HAProxy, which performs as a load balancer by

distributing the load amongst the servers. The HAProxy instance is configured

to balance the load by specifying the Public DNS of the virtual servers in its

configuration file. Accessing the Public DNS of the HAProxy instance will

redirect the user to either of the virtual servers. An entry is made into the access

logs of each of the virtual servers whenever the HAProxy instance’s Public

DNS is visited. It is observed that even when one of the two virtual servers is

turned off, the HAProxy redirects the user to the working server. The same will

be reflected in the servers’ access logs.

2.2 Creating Database Instance

Using the Amazon RDS on AWS, MySQL database is created. There is a

header called Databases in AWS under which RDS is found. In order to set up

MySQL database, certain specifications must be made while creating an

instance of MySQL database. The class of instance used is t2.micro that has a

storage capacity of 20 GB with one day of automated backup. The database is

created by choosing Create database option. Various database engines are

available on AWS including Oracle, Amazon Aurora, MySQL, etc. MySQL is

used as the engine in this work for the database after configuration.

2.3 Creating EC2 Instances

Once the database is created using RDS instance, EC2 instances must be created

to serve the purpose of web servers (VM) and load balancer. Two of the

instances created host login pages via apache web server. Each instance created

is linked to a previously created VPC and security group, having public and

private subnets in at least two availability zones.

2.4 Installing Apache Web Server

After creating the EC2 instances they are connected to apache web servers that

host login pages created as a PHP file. The option to fix all the previous bugs

and to update security of the EC2 instance must be chosen to update the

command prompt interface with a predefined command. In order to create the

login page, it is necessary to install the software package of PHP using a

command on Linux sudo yum install. Using this software package the Apache

web server will be installed. If the apache web server page is displayed when

the DNS of an instance is accessed, it can be confirmed that the instance is

connected to the apache server. Permissions are given to the web server and

www group is added to the ec2-user group. Other general commands for

refreshing, logout, changing directory, etc. are specified.

2.5 Connecting Web Server and Database

Once the apache web server is installed it should be connected to the database

created on AWS, i.e. the RDS instance. This connection is done by specifying

parameters such as ‘DB_SERVER’ (the end point of the database),

‘DB_USERNAME” (user dependent), ‘DB_PASSWORD’ (user dependent)

RVJSTEAM, 1,2 (2020) 34

Sahana B et.al. Optimal Load Balancing Strategy in a Virtual Environment

and ‘DB_DATABASE’ (default is sample) in the PHP file, which contains the

code for the login page.

Connection with the created EC2 instance is kept as it is and a new subdirectory

is created. The directory is changed to www/html and a fresh file is created in

html format to code the login page in PHP. This file is edited in Sublime Text

editor. The code ensures that a connection is established between the RDS

instance and the Apache Web Server.

2.6 Round Robin Algorithm

RRA distributes workload on the basis on the round robin principle. The

workload is distributed to the servers equally in a periodic manner. The

assignment of the load is done in circular fashion without considering any

priority and after reaching the last VM, it allocates the requests back to the first

VM. The cycle repeats as long as the requests are being sent. This method of

static allocation is easy to use and implement. The execution time for this model

is less as there is no inter-process communication.

Fig. 3. Representation of interface from client to server in cloud environment

The RRA implemented in this work has a very high load bearing capacity. This

algorithm need not save the prior states of the previous requests and is

developed using concepts of basic data structures. One of the most important

data structures maintained is the state list of each web servers (VM) which

stores the allocation status of each VM, i.e., if it is busy or available for

resource allocation. One of the other important data structures used is hash

mapping, which stores the entry details of the request of a client and the VM

allocated for the same [7]. If one of the VMs go down, the load balancer

identifies it and the request is allocated to the VMs that are active and free to

perform their duties. The first step of the algorithm is to consider all the VMs

available in the list and set their allocation status to available or not available.

At first there will be no entries and therefore the hash mapping will be set to no

entries. If there are new requests received by the load balancer then the load

End

user 3

End

user 2
Load balancer

VM1

VM2

Client

s

Client

Request

s

Internet

Web servers

End

user 1

RVJSTEAM, 1,2 (2020) 35

Sahana B et.al. Optimal Load Balancing Strategy in a Virtual Environment

balancer must queue these requests first for allocation in RRA, and it removes

requests one at a time from top of the queue of requests. If the VM satisfies the

conditions of the request sent, and the hash map contains the data necessary, the

VM is assigned for the mentioned process. If these conditions are not satisfied,

the request is allocated to the following VM using the RRA. Once the

allocation is done, an entry is made in the hash mapping data structure and also

into the VM list. The process is shown in Fig. 3.

3.0 Results and Discussion

Public key is used to log into AWS via terminal, and the EC2 instance’s Public

DNS is used to access the login pages. Three EC2 instances were generated on

AWS. Two instances (instance 1 and instance 2) act as virtual servers. The third

instance is the HAProxy load balancer. To activate the HAProxy, it must be

accessed using the security pem file, similar to that of the other two instances.

HAProxy is configured in the config file to balance the incoming load amongst

the VMs. The Public DNS IDs of the two VMs (instance 1 and instance 2) are

assigned as active servers to the HAProxy, and the RRA is specified. The login

page is hosted by apache web server. All the login details are stored in the RDS

instance created. The initial access log file is created as soon as the server is

created, and it is located in the var/log/httpd folder.

Every time a user accesses the login pages, through the HAProxy, an entry is

created in the access log file of that instance. Access log files are created on a

daily basis, from which information on server load can be obtained. Simulation

results are presented in Table 1.

Table 1. Simulation results based on the number of users

No of

Users

Execution

time, ms

Load

average

Idle state UNIX

Ports

Internet

connection

state

Memory

status

1-5 0.690 0.0~0.1 Almost 100

No

duplicates

Established

Good

5-10 0.726 0.2 99

10-15 0.747 0.7 92

15-20 0.786 0.9 87

20-25 0.801 1.2 81

As the number of users increased, the average load on the load balancer,

execution time and CPU usage increased. As the number of clients increased the

run-time changed nominally, showing that the proposed model is responsive.

RVJSTEAM, 1,2 (2020) 36

Sahana B et.al. Optimal Load Balancing Strategy in a Virtual Environment

4.0 Conclusion

Resource allocation in a virtual environment was implemented using HAProxy

as load balancer. Amazon RDS provides database storage of 20 GB which can

be expanded to 1TB based on the requirements. The Round Robin algorithm

used in this work is more efficient as the EC2 instances used as the web servers

have same specifications of capacity and response time. HAProxy has high load

bearing capacity with a low response time, ensuring faster resource allocation.

The combination of HAProxy, EC2 instances and the Amazon RDS database

makes the resource allocation mechanism efficient and reliable.

In case of web servers with different load bearing capacities, the round robin

algorithm can be modified. Implementation of HAProxy as load balancer

increases the flexibility and makes optimal usage of the VMs when compared

with application load balancer.

References

1. L Cao, S Fahmy, P Sharma, Data-driven Resource Allocation in

Virtualized Environments, 2019 IFIP/IEEE Symposium on Integrated

Network and Service Management (IM), Arlington, VA, USA, 20(6), 659-

664, 2019

2. Mahendra Bhatu Gawali, Subhash K Shinde, Task scheduling and resource

allocation in cloud computing using a heuristic approach, Journal of Cloud

Computing: Advances, Systems and Applications, 7(4), 1-16, 2018

3. Haitham Salman Chyad, Raniah Ali Mustafa, Kawther Thabt Saleh, Study

and Implementation of Resource Allocation Algorithms in Cloud

Computing, International Journal of Engineering & Technology, 7 (4.28),

591 -594, 2018

4. Rajanikanth Aluvalu, M A Jabbar Vardhaman, Jalpa Kantaria,

Performance evaluation of clustering algorithms for dynamic VM

allocation in cloud computing, 2017 International Conference On Smart

Technologies For Smart Nation (SmartTechCon), Bangalore, 1560-1563,

2017

5. A Khanna, Sarishma, RAS: A novel approach for dynamic resource

allocation, 1st International Conference on Next Generation Computing

Technologies (NGCT), Dehradun, 25-29, 2015

6. B Adrian, L Heryawan, Analysis of K-means algorithm for VM allocation

in cloud computing, International Conference on Data and Software

Engineering (ICoDSE), Yogyakarta, 48-53, 2015

7. Bhavana Bidarkar, Shakheela Attikeri, Ramya S Pure, Round Robin

Approach for Better VM Load Balancing in Cloud computing,

International Journal of Engineering Innovation & Research, 3 (4), 499-

502, 2014

RVJSTEAM, 1,2 (2020) 37

Sahana B et.al. Optimal Load Balancing Strategy in a Virtual Environment

8. Sandeep Kapur, Kumar Dinesh, Resource Utilization in Cloud Computing

using Hybrid Algorithm, Indian Journal of Science and Technology, 9

(43), 1-10, 2016

9. Mahesh, Prashant, Poonam, An Efficient Dynamic Resource Allocation

Strategy for VM Environment in Cloud, International Conference on

Pervasive Computing, 4(2), 1-5, 2015

10. Tinghuai Ma, Ya Chu, Licheng Zhao, Otgonbayar Ankhbaya, Resource

Allocation and Scheduling in Cloud Computing: Policy and Algorithm,

IETE Technical Review, 31 (1), 4-16, 2014

11. Mayanka Katyal, Atul Mishra, A Comparative Study of Load Balancing

Algorithms in Cloud Computing Environment, International Journal of

Distributed and Cloud Computing, 1 (2), 5-14, 2013

12. Lu Huang, Hai-shan Chen, Ting-ting Hu, Survey on Resource Allocation

Policy and Job Scheduling Algorithms of Cloud Computing, Journal of

Software, 8 (2), 480-486, 2013

13. V Vinothina, R Sridaran, Padmavathi Ganapathi, A Survey on Resource

Allocation Strategies in Cloud Computing, International Journal of

Advanced Computer Science and Applications, 3 (6), 97-104, 2012

RVJSTEAM, 1,2 (2020) 38

	3 Sahana RVJ29 Corrected

